Desayunos Tecnológicos ICH – CChC

El Instituto del Cemento y del Hormigón de Chile y el comité de vivienda industrializada en conjunto a la Cámara Chilena de la Construcción te invita los a desayunos tecnológicos que estaremos brindando en las ciudades de Viña del Mar, La Serena y Antofagasta.

Próximas Fechas

 


Viña del Mar
Martes 24 de Abril de 2018
Viana 1325, Viña del Mar

La Serena
Miércoles 16 de Mayo de 2018
Avda. El Santo N° 1140, Piso 4


Antofagasta
Jueves 24 de Mayo de 2018
Av. Angamos 1274, Antofagasta
Inscríbete Aquí

Malla Central en casas de hormigón armado. ICH lanza Manual de Detallamiento para casas de uno y dos pisos.





El presente documento comenzó a gestarse como respuesta a la inquietud de prestigiosas constructoras chilenas que en el año 2012 plantearon en los comités técnicos del ICH la necesidad de abrir alternativas para detallar con malla central en proyectos de casas de hasta dos pisos. En esos años, si bien ya había proyectos ejecutados en hormigón armado con malla central, no era la práctica común de las oficinas de ingeniería y cálculo estructural, de hecho, había un manto de dudas respecto al comportamiento sísmico de muros con malla central en proyectos hasta dos pisos. Es así, que en el año 2013 en un proyecto conjunto entre la Pontificia Universidad Católica de Chile, el ICH y un destacado grupo de empresas constructoras, demostraron el adecuado comportamiento de muros de hormigón armado con malla central en proyectos de baja demanda de ductilidad. Con esto, se validó estructuralmente el sistema y de esta forma, quedó abierto como una alternativa más para ser especificada por oficinas de ingeniería.

La novedad de este texto está en mostrar los detalles específicamente utilizados en casas de hormigón armado; tales como encuentros de muros con malla central y losas tradicionales, losas de fundación, alternativas de canalización de ductos en muros delgados, entre otros. Esta primera versión se basó en documentos del ICH además de planos y detalles típicos usados por constructoras en Chile y el extranjero.

Descárgalo Aquí

Fisuración Aceptable en Muros de Hormigón Armado. Un especificación técnica ICH por comportamiento




El objetivo de esta Especificación Técnica es establecer límites máximos a las fisuras que aparezcan en muros de Hormigón Armado y que no afecten su resistencia y funcionamiento. Para ello, se definen indicadores para asociar el comportamiento de fisuración en un muro a un estándar de resultado aceptable, y se proponen las acciones de reparación que sean requeridas. Además, se entregan pautas generales para permitir a empresas que cuenten con procedimientos para cumplir con los resultados especificados, puedan utilizar estos sin que se les especifique el procedimiento de ejecución.

ESTÁNDAR DE FISURACIÓN ESPECIFICADO

Las fisuras de origen no estructural en muros cuyo ancho sea no mayor que 0,5 mm se consideran como fisuras sin implicancia estructural. Las fisuras de ancho mayor que 0,5 mm podrían afectar el comportamiento estructural y por lo tanto deben ser evaluadas por el ingeniero estructural del proyecto.

Las fisuras de origen no estructural en muros que hayan sido diseñados para soportar alta solicitación de corte, según el criterio del ingeniero estructural que calculó el proyecto, se consideran sin implicancia estructural cuando su ancho no sea mayor que 0,3 mm, tales muros deben ser expresamente indicados en los planos o especificaciones técnicas del proyecto. Las fisuras de ancho mayor a 0,3 mm en estos muros deben ser evaluadas por el ingeniero estructural del proyecto.

En el caso de utilizar canterías para inducir la fisuración en lugares controlados, se aceptará obtener anchos de fisuras mayores a los del estándar de fisuración especificado para el elemento. En este caso, el estándar deberá cumplirse entre las canterías definidas a lo largo del muro o en la longitud definida por la cantería más cercana al borde y el borde del muro.

*Extracto documento: Especificación Técnica 001-05: “Fisuras no Estructurales en Muros de Hormigón Armado”



Puedes revisar el documento completo aquí

Jeddah Tower: Avanza la construcción del primer edificio de 1 Km de altura. 100% Muros de hormigón armado



Estas son las imágenes de lo que pronto será el edificio más alto del mundo. Diseñada por los arquitectos de la firma “Adrian Smith + Gordon Gill Architecture”, se espera que la torre Jeddah de 1 kilómetro de altura abra sus puertas a mediados del 2020, dejando atrás al icónico Burj Khlaifa de Dubai como el rascacielos mas alto del mundo sobrepasándolo por cerca de 72 metros.
El costo de la construcción se estima en 1.4 mil millones de dólares.

Hacia fines de del año 2017, la torre solo tenía 252 metros, pero ya se apreciaba su imponente atractivo.
Esta torre será el icono de Jeddah Economic City, un proyecto comercial y residencial de más de 5 millones de metros cuadrados que contara con casas, hoteles y oficinas, además de atracciones turísticas.



La construcción de la Torre Jeddah, se enmarca dentro de la “Saudi Vision 2030”, un plan del gobierno Saudita que apunta a diversificar la economía de ese país y reducir su dependencia del petróleo y posicionar al país como un referente en nivel mundial


Lee la noticia completa en el siguiente enlace:

http://edition.cnn.com/style/article/jeddah-tower-saudi-arabia-new/index.html

Sistema Estructural



Este edificio, diseñado por la oficina Thorton Tomasetti es el más alto en constucción en la actualidad. Todas las cargas gravitacionales y laterales (sismo y viento) son resistidas por un sistema de muros acoplados de hormigón armado. Los muros más solicitados y por ende los más fuertes son aquellos en los extremos de las tres alas del edificio. Estos tres muros tienen un ligera inclinación (3.0, 3.3 and 3.6º respecto a la vertical respectivamente) y por lo tanto alcanzan el coronamiento a diferentes alturas, lo que le da una forma especial a la espiral superior. El resto de los muros de la estructura son completamente verticales y corresponden a los muros del núcleo triangular y los muros de pasillo y muros perpendiculares a estos últimos en una configuración tipo espina de pescado.





A diferencia de la mayoría de los edificios “Súper Altos” la estructura de esta torre no considera outriggers ni columnas gravitacionales, siendo los muros los encargados de tomar tolas las solicitaciones. Estos tiene espesores de 1.2 m en la base a 0.6 m en el coronamiento y están acoplados con dinteles de aproximadamente 1.5 m de altura.
La estructura vertical de la torre utiliza hormigones de alta resistencia, hasta la mitad de la torre se especifica una resistencia cilíndrica mínima de 85 MPa a 90 días, en tanto que en los pisos superiores baja a 75 y 65 MPa.





Lee la noticia completa en el siguiente enlace:

http://fullsdelsenginyers.cat/article/kingdom-tower-structural-system-and-how-it-was-developed

El hormigón se convierte en el principal material para la construcción de casas





El hormigón se transforma en el principal material en la construcción de casas dentro de la Región Metropolitana, con un 46% de participación superando por primera vez a la albañilería que se queda con un 43%, esto refleja el enorme impacto que los sistemas de moldajes monolíticos y las casas prefabricadas de hormigón ha tenido en este segmento.



Arquitectura y Urbanismo | Hotel Puclaro




Ubicado en el embalse Puclaro, epicentro de disciplinas que mezclan agua y viento, como el windsurf y el kitesurf, el hotel Puclaro abrió sus puertas en el año 2016 con cuatro cabañas para seis personas y ocho habitaciones alojadas en cubos de hormigón empleados comúnmente para el desarrollo de colectores de agua.

Pensado como un hotel boutique, su dueño, Bob Borowicz, buscó hoteles con diseños singulares alrededor del mundo, de manera de imprimirle un sello al lugar. A modo de ejemplo, buscó hoteles construidos con tubos de hormigón en Holanda y Alemania, “hasta que se llegó a la idea de hacerlo con cajones de hormigón. Buscamos en el mercado nacional y finalmente los especialistas de la empresa Bottai en Santiago nos propusieron la solución técnica en base a cajones cuadrados de hormigón”, comenta César Zavala, gerente general del hotel Puclaro.

Efectivamente, el recurso técnico vino de la mano de la empresa de prefabricados de hormigón Bottai. Entre sus múltiples soluciones, “tenemos cajones de hormigón en formato tubular, cuadrado y rectangular. Gracias al mayor grosor de sus paredes (hasta 250 mm), éstos son capaces de alcanzar un nivel más alto de resistencia estructural que tuberías de similar diámetro. Del mismo modo, destacan por su alta capacidad hidráulica, rápida instalación y bajo costo. Dada su versatilidad y alta resistencia los cajones prefabricados de hormigón poseen múltiples usos y aplicaciones, entre los cuales destacan, conducción de aguas pluviales, puentes, canalización de ríos, alcantarillas de carreteras, entre otros”, sostiene Marcelo Bottai, Director Ejecutivo de la empresa.

“Cuando la gente del hotel llegó con esta idea de aplicar los cajones como dormitorios, no solo nos llamó la atención, sino también nos entusiasmamos y tomamos el desafío”, prosigue Marcelo Bottai.

Como son soluciones prefabricadas, hubo que adaptarlas en la planta a partir de los planos de arquitectura. “Dejamos perforaciones para las instalaciones eléctricas, junto con ello el proyecto de arquitectura contemplaba lucarnas en el techo, por ello especificamos también el espacio en el techo”, recuerda Felipe Wedeles, socio de la oficina WMR Arquitectos a cargo del proyecto de arquitectura.

En total fueron 8 cubos dobles de hormigón, donde cada uno pesaba del orden de las 10 toneladas. Sus medidas eran de 2,5 x 2,5 metros. “Hay que tener en cuenta que estos tubos vienen con dos caras abiertas, en cambio, para este proyecto se agregó un tercer fondo, quedando solo una cara despejada, la que vendría a ser la ventana de las habitaciones. Entre cubos se unían de forma apernada. “A futuro estamos estudiando una unión en base a tensores de piezas prefabricadas, nuestro objetivo es entregar estas soluciones con las uniones listas”, destaca Marcelo Bottai.
El ejecutivo cuenta que este ejemplo en el extranjero se multiplica, “en Alemania se utilizan tubos prefabricados y se adaptan como dormitorios. Incluso se pueden colocar uno encima de otro, de dos hasta de tres pisos, armados como una especie de mecano”, comenta Marcelo Bottai.

Otra característica técnica es que los cajones son de 25 o 30 cm de espesor y poseen armadura de acero. “Para su fundación se necesita de una base estabilizada, para el caso del hotel el terreno era de buena calidad por lo que solo se requirió hacer una nivelación, una cama de ripio y arena. Los cajones van sobrepuestos sobre el terreno ya que su propio peso hace de ancla al terreno”, complementa Felipe Wedeles.

Una complejidad de los cajones fue su transporte. “Salieron desde Santiago en camiones de cama baja, solo dos por camión. En terreno se disponía su montaje con una grúa de 80 toneladas, quedando emplazados en especies de terrazas cuya orientación es hacia el embalse”, destaca César Zavala.

Para este tipo de solución técnica, como una alternativa al estabilizado, “es aconsejable una cama de hormigón para evitar deformaciones y dar una mayor rapidez en la instalación de los cajones”, detalla Marcelo Bottai. Asimismo y como resguardo, “se debe evitar toda irregularidad en terreno y conseguir un apoyo uniforme, tanto a lo ancho como a lo largo del cajón”, prosigue el ejecutivo.


En medio de los paisajes inconfundibles de la IV región de Chile, se emplaza este hotel boutique que mira al viento.

Novedades Tecnológicas | Conectividad con la Isla Grande de Chiloé




Con el objetivo de unir la Isla Grande de Chiloé con el territorio continental, es que el Ministerio de Obras Públicas (MOP) determinó la construcción de un puente que busca mejorar la conectividad de la isla con el resto del país. Se trata del Puente Chacao, estructura que cruzará el canal homónimo, con una longitud de más de 2.750 metros y con doble vano mayor a 1.000 metros cada uno. La obra se realiza bajo la modalidad de contratación a suma alzada, a través de la Dirección de Vialidad del MOP.


Durante la década del 2000 el proyecto se conocía como “Puente Bicentenario”, porque sería construido como forma de conmemorar en 2010 los 200 años del inicio del proceso de independencia de Chile (concluida precisamente con la anexión de Chiloé en 1826). En junio de 2009, el MOP decidió reactivarlo con un nuevo diseño más económico que el original, solución que no rindió frutos. Finalmente, en mayo de 2012, se anunció la reactivación de este proyecto con un llamado para una licitación internacional, donde se definió el consorcio Contratista (integrado por OAS, Hyundai, Systra y Aas-Jakobsen). El plazo original del contrato no ha sufrido modificaciones, por lo que la obra debería estar en marcha blanca el año 2021.
Horacio Pfeiffer, jefe de Proyecto del Puente Chacao del MOP, cuenta que, hasta hora, se han ejecutado las siguientes faenas: despeje de áreas de trabajo en ambas riberas, muelle en ribera norte, plataforma de aproximación hasta la ubicación de la pila norte, plataforma temporal de trabajo en Roca Remolinos, instalaciones de faenas en ambas riberas, disposiciones del campamento norte, zonas de acopio de materiales en ribera norte y otras obras menores.

Diseño del puente



Al tratarse de un puente de gran envergadura, no existe un único código de diseño que englobe todos los aspectos de la estructura. Es por lo anterior, que se generó un Manual de Diseño propio para el Puente Chacao, basado en AASHTO LRFD, Manual de Carreteras y complementado con normas y estudios que abarcan las condiciones particulares del proyecto y su entorno.
Los objetivos del diseño son la seguridad, funcionalidad, constructibilidad y estética. Para dichos objetivos se contempla una vida útil de 100 años.


El proceso del diseño ha seguido el siguiente esquema:

  • Requisitos de diseño proporcionados por las Bases de Licitación (BALI).
  • Requisitos de códigos de diseño AASHTO y Manual de Carreteras.
  • Ejecución de ingenierías básicas: estudios de viento, estudios sísmicos, topografía, batimetría, entre otros.
  • Elaboración del Manual de Diseño.
  • Elaboración de especificaciones técnicas.
  • Desarrollo de análisis global: análisis estático y dinámico, análisis de viento, entre otros.
  • Desarrollo de documentos de diseño: diseño geotécnico, diseño definitivo, análisis estructural de elementos, entre otros.

Características



La infraestructura que estará sobre el Canal de Chacao contempla la construcción de dos macizos de anclaje. Estas estructuras, ubicadas en las riberas norte y sur del canal, serán las encargadas de sostener y tensionar todo el sistema de cables del puente y serán enterradas en el terreno, usando más de 20 mil metros cúbicos de hormigón cada una. Las pilas o torres, tendrán alturas de 157 metros (Pila Sur), 175 metros (Pila Central, en forma de Y invertida) y 199 metros (Pila Norte).

Asimismo, desde la Dirección de Vialidad afirman que “el proyecto considera fundaciones de hormigón armado para sostener cada una de las pilas del puente. Estas son profundas con un sistema de pilotes de 2,5 metros y camisas de acero permanentes. Las pilas se construirán mediante un sistema auto-trepante, a través de módulos de moldaje que irán subiendo a medida que el hormigón va fraguando, lo que permitiría un avance de hormigonado cada 6 a 8 días”. La fundación de la pila central será de 9.550 m3 de hormigón y de 1.700 toneladas de acero. Para las fundaciones de la pila sur, se utilizarían 3.600 m3 de hormigón y de 300 toneladas de acero y la pila norte contaría de 5.300 m3 de hormigón y 850 toneladas de acero en su fundación.

Respecto de los cables, se proyecta contar con tecnología japonesa y coreana, utilizando aceros de alta resistencia (186 MPa de resistencia a la tracción). Su fabricación se realizará utilizando técnicas sumamente avanzadas en su construcción, afirman en la Dirección de Vialidad. Para izarlos, los cables serán remolcados por botes y otros equipos de amarre y protección. La colocación del cable principal se realizaría a través del método PPWS (Hilos de Alambre Paralelos Prefrabricados), conformado por torones hexagonales prefabricados (se trata de un conjunto de alambres de acero, donde cada uno es capaz de levantar 2 toneladas), lo que facilitará el montaje en terreno.

El tablero será de tipo cajón en materialidad de acero, para cuatro pistas de 22,5 m de ancho (con un diseño aerodinámico que se adecuará a las condiciones de viento del entorno), y su construcción se realizará mediante segmentos que se unirán por medio de elevación directa (grúas posicionadas sobre los cables que levantarán los segmentos desde la barcaza transportadora). Según la Dirección de Vialidad, cada módulo tendría 37 metros de largo por 25 m de ancho, alcanzando una utilización de materia prima de 16.777 toneladas.

El Puente Chacao tendrá, entre otras importantes características, amortiguadores dinámicos sismorresistentes (sistemas pasivos, del tipo hidráulicos, elastoméricos y friccionales, que se instalan en la unión del vano y los accesos, para reducir la aceleración longitudinal y transversal del tablero, al momento de ocurrir un sismo) ubicados en cada extremo de la obra y un sistema de detección de estación meteorológica e instrumentación para la medición de temperatura y humedad.

Por otro lado, en la Dirección de Vialidad, señalan que se encuentran ejecutados accesos viales concesionados desde la Ruta 5, que tienen 7,8 km en el sector de Pargua y 5,9 km en el de Chacao. “La posible tarifa por vehículo sería más baja que la actualmente cobrada por los transbordadores, pero en el nuevo escenario se tendría además una autopista hasta Castro”, aclaran. Otras innovaciones del puente tienen que ver con la tecnología asociada al monitoreo de su estado (para labores de mantenimiento) como también respecto del tránsito y sistema de avisos de incendios y accidentes.

Desafíos técnicos



Además, Pfeiffer detalla paso a paso los principales desafíos técnicos que han tenido que sortear:

Experiencia: en Chile se tiene muy poca experiencia sobre puentes colgantes de grandes luces. A la fecha, existen 42 estructuras colgantes en el país y solo 10 de ellas exceden los 100 m de luz principal, siendo el mayor de ellos el puente Presidente Ibáñez, con 210 m de luz. Para sortear este problema, se contrató una Asesoría Técnica reconocida mundialmente en el diseño de puentes singulares de grandes luces.

Se han realizado reuniones de coordinación y consenso técnico entre el Consorcio Puente Chacao (CPC), la Asesoría de Inspección Fiscal (AIF) y el MOP), como son las reuniones mensuales, otras denominadas tripartitas de distinta periodicidad. De manera adicional, se han realizado workshops de distinta índole, las cuales han sido netamente de transferencia de conocimiento.
Ingenierías Básicas: debido a las características singulares del lugar de emplazamiento del puente y la envergadura del mismo, es que incluso las ingenierías básicas, que son consideradas tradicionales, han tenido que sortear distintos desafíos técnicos. Esto ha llevado, en algunos casos, a recurrir a la ejecución de ensayos en otros países, que poseen la tecnología adecuada. Algunos ejemplos son el túnel de viento que fue desarrollado en Corea del Sur o el ensayo triaxial dinámico que fue ejecutado en USA. Además, se ha requerido de equipos de última tecnología para la toma de mediciones in situ, como lo es el desarrollo de la batimetría de precisión.

Diseño Sísmico: debido a la alta sismicidad chilena, la presencia de la Falla del Golfo de Ancud (FGA) y las características topográficas abruptas en el lugar de emplazamiento del puente, es que se han realizado estudios de riesgo sísmico probabilístico y determinístico para establecer la demanda sísmica en la fase de construcción y en el período de vida útil del puente. Para validar los estudios, se realizó un estudio de sitio, el cual se ha llevado a cabo con mediciones in situ de ocho sismómetros y tres acelerógrafos emplazados en puntos estratégicos del terreno.

El diseño sísmico se basó en AASHTO LRFD, considerando un sismo de diseño con 10% de excedencia en 100 años (período de retorno de 1000 años) y una categoría de importancia de puente esencial.
Cabe indicar que, para lograr una mayor robustez estructural, se utilizó la metodología de diseño elástico, considerando aquellas zonas de posibles rótulas plásticas un factor de seguridad a la falla frágil (Brittle Failure Factor) de 1.4, además de considerar un adecuado detallamiento sísmico en dichas zonas.

Durabilidad: este tema no es tratado en el Manual de Carreteras, ni en la Normativa chilena INN (cuando se licitó el proyecto); sin embargo, es un punto importante a considerar en el puente debido a la vida útil proyectada de 100 años. La durabilidad se consideró como un punto esencial en el diseño, donde se identifican los mecanismos potenciales de deterioro. También se toma en cuenta el efecto de los agentes agresivos que pueden provocar el deterioro del hormigón (ya sea externo o interno) y los mecanismos que pueden conducir a la corrosión del refuerzo. De esta manera se utilizarán recubrimientos necesarios de los elementos de hormigón para garantizar su vida útil. Por otra parte, el cable principal tiene un sistema de protección mixta que contempla: cables principales galvanizados con capa de zinc de 250-300 g/m2 o con un espesor de film seco de 40 µ; luego de la compactación, los cables principales estarán protegidos por sistema de enrollado más la adición de epoxi elástico o una envoltura elastomérica; finalmente, actuará el sistema de deshumidificación para el flujo de aire seco.

Junto a estas disposiciones, otro punto importante a considerar es el mantenimiento de los elementos que no sean diseñados para tener una vida de servicio de 100 años, contemplando en el diseño y estructuración el fácil mantenimiento y reemplazo de estos.

Constructibilidad: a raíz de la particularidad de poseer un puente colgante de grandes luces, tres pilas y asimétrico (el más largo en este estilo) conlleva desafíos constructivos a nivel mundial. Adicionalmente, las condiciones particulares del terreno y las características ambientales de la zona complejizan aún más las obras de construcción. En pos de asegurar la adecuada calidad de las obras y cumplir con los plazos establecidos es que el contrato, el diseño y construcción se gestaron unidos, de manera de considerar aspectos de constructibilidad en el diseño. Por otro lado, se elaboró un documento de metodología constructiva para demostrar que los elementos diseñados se pueden construir adecuadamente en los plazos acordados.

Sondajes



Dadas las condiciones del fondo marino y las condiciones de mar imperantes, los sondajes fueron ejecutados desde plataformas fijas (Jack Up). Pfeiffer, explica que los sondajes ubicados en la Pila Norte se realizaron a bordo de la plataforma marina Jack-up JB119, propiedad de la empresa Jack Up Barge; por otro lado, los sondajes ubicados en el Pila Central (Roca Remolinos) se ejecutaron a bordo de la plataforma marina Jack-up Pioneer III, propiedad de la empresa Hyundai. La ejecución de estos trabajos requirió la instalación de un revestimiento desde la plataforma hasta el fondo marino, con el objetivo de proteger a la columna perforadora de las olas y corrientes, las que generan vibraciones no compatibles con el objetivo de la calidad deseada.

Hormigón



Los diferentes hormigones indicados para el proyecto deben cumplir dos requisitos primordiales: resistencia y durabilidad. La resistencia de los distintos elementos de hormigón varía desde G30 a G45 de acuerdo a la nueva Norma NCh170 of.2017.


Los requisitos de durabilidad fueron incluidos en el diseño en función de la Clase de Exposición a cloruros, traducidos en recubrimientos según elemento (Cuadro 1).
Se especifican siete clases de hormigón para las distintas partes de la estructura (Cuadro 2).
La determinación de la resistencia a la compresión del hormigón se realizará en probetas cilíndricas de 150 mm de diámetro y 300 mm de altura, según NCh1037. La resistencia de diseño del hormigón se basa en ensayos a 28 días.


Pfeiffer detalla que la construcción está planificada para comenzar con los pilotes de la pila central. Para el abastecimiento de hormigón, se proveerá de una planta de hormigón in situ instalada en la Roca Remolinos mediante una plataforma flotante. “Por otro lado, el abastecimiento de las camisas de acero está contemplado por vía marítima, atracando directamente en el muelle norte para su posterior distribución a la zona de construcción”, finaliza el ejecutivo.

Columna | Desarrollo portuario: Desafíos futuros y uso del hormigón armado



Es un hecho innegable que el bienestar económico de un país como el nuestro, con un extenso borde costero, está estrechamente ligado al desarrollo portuario. Una buena medida de la salud de nuestra economía, es la cantidad de bienes y productos que se transen. Como bien sabemos, un porcentaje importante de las mercancías que se comercializan a nivel mundial, entran y salen por los puertos, ya sean a través de importaciones o exportaciones. He ahí la importancia del desarrollo constante de proyectos relacionados con la infraestructura portuaria.
Durante los últimos años, la cantidad de proyectos relacionados con borde costero han ido a la baja, en línea con la mayoría de las áreas productivas del país. Sin embargo, hay un par de iniciativas de relevancia en que ha habido avances significativos. Con el objeto de dotar a la zona central del país de infraestructura portuaria acorde con una demanda creciente de los próximos años, las Empresas Portuarias de Valparaíso y San Antonio están efectuando los estudios de ingeniería de los Puertos de Gran Escala (PGE). Durante los próximos años conoceremos cuál de estas empresas seguirá adelante con la iniciativa.

Por otro lado, con la expansión del Canal de Panamá, que ha tenido que adaptarse a la tendencia mundial de la industria naviera y construcción naval, es esperable que se activen varios proyectos de modernización y ampliación de puertos en Chile. Estos puertos deberán tener la capacidad de recibir naves de mayores dimensiones para ser competitivos en el mediano plazo. De este hecho deben aprenderse algunas lecciones, pues tendemos a decidir con una mirada de corto plazo, priorizando la inversión justa y necesaria para satisfacer requerimientos actuales, sin tener suficiente visión de las proyecciones de mediano plazo. Es algo que debemos mejorar como país a todo nivel, gobierno, empresas portuarias, operadores portuarios, concesionarios, con-
tratistas e ingenieros. En Chile existe la capacidad profesional y la experiencia en el desarrollo de proyectos de clase mundial, solo hay que quebrar esa tendencia costo-dependiente y de corto plazo.

Como ocurre para la mayoría de las obras de infraestructura, el hormigón armado es un material de construcción por excelencia en las obras marítimas. Los proyectos portuarios relevantes, que involucran la operación de maquinaria pesada, y que están emplazados cerca de la línea de costa, requieren el uso de hormigón armado, por su resistencia y durabilidad. En ese escenario, los ingenieros nos enfrentamos a desafíos importantes en términos de diseño y construcción con hormigón armado en volúmenes importantes, y en un ambiente severo, como lo es el ambiente marino.

Las estructuras involucradas en los puertos, son habitualmente estructuras robustas, volumétricamente considerables, y que durante su hormigonado presentan además algunas dificultades que hay que resolver, como por ejemplo el control de calor durante la hidratación del hormigón. Además, se debe tener en cuenta que el ambiente marino es altamente exigente, las estructuras de hormigón están expuestas al ataque de sulfatos y cloruros, además de la acción permanente de las cargas hidrodinámicas. Es conocida la agresividad de estos agentes, y las repercusiones que estos generan en las estructuras, por esta razón, es necesario especificar, diseñar y fabricar mezclas de hormigón que sean capaces de resistir la severidad del ambiente marino. En esa línea, es de relevancia superlativa controlar el grado de permeabilidad de los hormigones. Los hormigones de alta impermeabilidad son más durables, ya que entregan mayor resistencia a la penetración del ion cloruro. En relación a este aspecto, es de suma importancia que la industria de fabricación de hormigón mejore su flexibilidad y versatilidad, de forma que se simplifique la confección de hormigones con características diferentes a las habituales, que se simplifique la incorporación de otros materiales y adiciones.

La mayoría de las normas de hormigones en ambiente marítimo, sugieren características generales que deben cumplir los materiales constituyentes del hormigón. Sin embargo, en los últimos años ha habido una evolución hacia el diseño por durabilidad del hormigón, que debe ser compatible con la vida útil que se espera de las instalaciones marítimas. Este aspecto ya aparece explícito en la última versión de la Norma Chilena NCh170 (2016), por lo que constituye una obligación que debe ser abordada por los ingenieros estructurales.

Como conclusión general, se puede señalar que el desarrollo portuario futuro nos presenta el desafío de contar con infraestructura capaz de atender una mayor transferencia de carga futura, y al mismo tiempo tener la capacidad de adaptar prontamente nuestros puertos para naves de mayores dimensiones. Es de esperar que se generen varios proyectos de modernización de la infraestructura, en una industria marítima que crece cada vez más. Desde el punto de vista técnico específico del diseño en hormigón armado, hoy es importante que los ingenieros estructurales atiendan las tendencias modernas del diseño, incorporando los aspectos relacionados con la durabilidad del hormigón y la vida útil esperada de las estructuras marítimas.

Recomendaciones Técnicas | Sistema Bamtec para armaduras planas





La seguridad y la productividad son hoy una prioridad en la construcción, es por esto que la industria se ha preocupado por desarrollar diversas soluciones que se hagan cargo de dichas necesidades. Esta vez se trata del Sistema de enfierradura Bamtec que consiste en la unión de barras para hormigón rectas mediante varios flejes metálicos perpendiculares con lo que se logra un elemento similar a una “alfombra” que permitiría una simple y rápida instalación en obra aumentando rendimiento y disminuyendo plazos.

Manuel José Navarro, gerente general de ATC Acero, quien provee esta solución, cuenta que este método de armadura Bamtec fue desarrollada en 1994 como una solución para facilitar el diseño y construcción de losas de hormigón armado, usando las nuevas tecnologías desarrolladas para optimizar el diseño de las losas. De acuerdo a lo que indica el ejecutivo, esta tecnología podría emplearse con éxito en la construcción de obras como puentes, radieres armados de túneles, como por ejemplo en el Metro y, en general, en cualquier obra con estructuras planas de hormigón armado.

La innovación de Bamtec enlaza el trabajo de la oficina de planificación de estructuras y construcción con la producción de armaduras mediante el uso de la tecnología de procesamiento de datos.

Según el experto, “el sistema es más eficiente ya que, por sus características, permite optimizar las cuantías de acero, colocando la cantidad necesaria en cada sección de la estructura y además realizar las labores de instalación con un menor número de trabajadores en obra. Este sistema consigue además un mejor control del fierro en obra, pues es mucho más fácil controlar rollos que paquetes de barras sueltas, las que se suelen “perder” o bien utilizar en lugares que no corresponden”.

Todo lo anterior se traduce en una mayor certidumbre para cumplir los siempre exigentes plazos de los proyectos, con los consiguientes ahorros en plazos y costos. En instalación de un rollo puede ahorrar hasta un 80% del tiempo que se requiere para instalar una superficie equivalente con el método tradicional.

Por otro lado, Augusto Holmberg, gerente general del ICH, cuenta que este sistema fue presentado en el año 2001 en ExpoHormigón, época en que no se le veía un gran potencial.

Cálculo



El sistema Bamtec tiene como ventaja la flexibilidad para fabricar elementos a la medida para cada proyecto. En primer lugar, el detalle se realiza con un software especializado que genera el archivo de fabricación, lo que reduce al mínimo las posibilidades de errores en el proceso de fabricación. Todo este procedimiento de “redetallamiento” es realizado por ATC a partir de la normativa vigente.

El sistema permite dejar las pasadas requeridas por el proyecto en las losas o muros, como también agregar los refuerzos o suples necesarios según el proyecto de cálculo.
El sistema también permite formas especiales en las losas, tales como curvas, cortes en ángulo o lo que requiera el arquitecto

Características



Navarro afirma que es importante destacar que en un mismo rollo pueden contar con barras de diferentes diámetros, largos y espaciamiento, lo que permitiría ajustarse adecuadamente a los requerimientos del proyecto.

La máquina automatizada que fabrica este sistema puede operar con diámetros desde los 8 mm hasta los 32 milímetros. En los casos de acero entre 8 mm y 16 mm, la máquina es alimentada por acero en rollos, los que endereza, dimensiona y corta en forma automática, según lo requieran los planos, que lee directamente del software.

Prácticamente se convierte en una “impresora” de barras. En el caso de diámetros de 18 mm hacia arriba las barras se deben pre dimensionar antes de introducirlas al equipo.

Asimismo, la máquina es capaz de fabricar rollos que van desde los 2 metros de ancho hasta los 15 metros, con un largo de desenrollado de hasta 25 metros, siendo la principal limitante en las dimensiones el peso del rollo lo que es determinado por la capacidad de grúa que se disponga en terreno.

El ejecutivo detalla que el montaje es un proceso simple en el cual hay que posicionar los rollos según el plano de montaje entregado por ATC y simplemente desenrollar el rollo como si se tratara de una alfombra. “La clave para el montaje es posicionar correctamente la primera barra en el punto indicado en el plano de montaje para luego simplemente desenrollar. Uno debiera contar con un trabajador por cada 250 – 300 Kg de rollo y el ciclo completo entre rollo y rollo debiera ser del orden de 15 minutos. Hay que considerar que el desenrollado en sí no toma más de 2 a 3 minutos”.



“Desenrollando dos rollos en sentido perpendicular se logra la malla, la cual debiera tener un mínimo de amarras entre rollos, ya que el fleje metálico que une las barras permite que estas funcionen como un único elemento”, explica Navarro.
En cuanto a recomendaciones técnicas, el ejecutivo afirma que el sistema resulta bastante intuitivo de instalar, siendo lo más crítico el correcto posicionamiento de la primera barra e instalar el rollo que corresponde en cada posición. “Para esto se entregan planos de montaje donde se define la posición de cada rollo y a su vez cada rollo lleva etiquetas que permiten su identificación”.

Logística



El transporte de los elementos Bamtec se realiza con camiones aptos para cargas de hasta 25 toneladas. Normalmente, se realiza en camiones estándar y para el movimiento de los elementos se utilizan elementos típicos de izaje como cadenas y eslingas.

Gracias a la reducción de los elementos de armadura empleados y a la rapidez con que pueden ser desenrollados, la colocación se acelera y se simplifica considerablemente. De este modo, se lograría reducir el tiempo total de construcción.

Dependiendo de las características del proyecto, será el peso de los rollos.

Errores



En cuanto a los errores que se pueden cometer a la hora de su instalación, el ejecutivo cuenta que uno de ellos es el posicionamiento incorrecto de la primera barra, “lo que se puede corregir tirando el rollo ya instalado hasta su posición correcta o bien se puede cortar los flejes y así reacomodar la malla”. En el caso de instalar un rollo en una posición que no corresponde, se recomienda amarrar de manera manual los espirales que le dan la forma al rollo y este se vuelve a reenrollar para instalarlo en la posición que corresponda. Siempre van dos etiquetas en cada rollo, una por fuera y otra por dentro del rollo.

Este sistema se ha usado en obras como el Centro Comercial Piedra Roja para AXIS Desarrollos Constructivos y en las Estaciones de Metro de la Línea 6, Estadio Nacional e Inés de Suárez para Besalco-Dragados, Estanques de Aguas Andinas para Echeverría Izquierdo.

Reportaje Central | Desarrollo Portuario en Chile



Se calcula que el 90% del volumen de carga de bienes a nivel mundial se mueve por vía marítima. En el caso de Chile, el 97% por volumen de la carga total, importaciones más exportaciones, se mueve a través de los puertos.

De acuerdo a la evaluación del Logistics Performance Index (LPI), del Banco Mundial, los puertos chilenos están entre los más eficientes de América Latina y el Caribe, aunque distan bastante de los indicadores de los países más desarrollados de la OCDE o de las naciones asiáticas más avanzadas.
Un elemento de preocupación, según este indicador, es que el puntaje de Chile en cuanto a la “calidad de la infraestructura para el comercio y el transporte”, bajó desde 3,06 a 2,77 en los últimos 10 años. Esto implicó pasar, desde el lugar 34 al 63, reflejando una pérdida de competitividad frente a otros países, y particularmente de la región, donde Panamá se ha convertido en el líder.

¿Qué se observa detrás de estas cifras?Como lo señala a Revista Hormigón al Día Ian MacPherson, gerente general de la Cámara Marítima y Portuaria de Chile A.G. (CAMPORT), “a nivel nacional, en los últimos años han surgido con fuerza dos factores que están presionando por nuevos ajustes a la infraestructura y su gestión. El primero se relaciona con los accesos a los recintos portuarios, los que no han sido adaptados para permitir un tránsito eficaz de la mayor carga que los puertos están movilizando. El segundo surge del incremento de las marejadas y condiciones climáticas adversas, lo que ha provocado un aumento en el número de días de cierre de los terminales”.

En tanto, para el gerente de infraestructura de la Cámara Chilena de la Construcción (CChC), Carlos Piaggio, “en general, hemos visto en Latinoamérica que la capacidad instalada en términos portuarios está llegando a sus límites, y se espera que la demanda crezca fuertemente los próximos años, por lo que va a ser indispensable asegurar las capacidades físicas y tecnológicas para sustentar esta alza”.

Chile en el contexto mundial



Si bien el país se encuentra entre los líderes de Latinoamérica, tanto en eficiencia como en infraestructura de sus puertos, “nuestros competidores directos han avanzado más que nosotros en los últimos años, constituyéndose esto en una amenaza latente para nuestra industria portuaria. Hoy está siendo más atractivo, en algunos casos, desembarcar grandes naves en otros puertos para luego traerlas a Chile en barcos menores”, comenta Gonzalo Pérez, ingeniero de Estudios del Consejo de Políticas de Infraestructura (CPI).
Respecto de la existencia de una política, lo que ha faltado es una estrategia integrada de desarrollo logístico-portuario con una visión de largo plazo, que considere no solo los puertos en su conjunto, sino que además los requerimientos en su vinculación con los otros modos de transporte (complementarios) y su relación con las comunidades.
En cuanto a la política portuaria nacional, el país realizó un primer esfuerzo el 2014 con la publicación del Plan Nacional de Desarrollo Portuario (PNDP) pero este solo se centró en los puertos estatales. “Nuestro país tiene una configuración portuaria mixta, es decir, con puertos públicos operados mediante las concesiones portuarias y puertos privados que se instalan mediante una concesión marítima”, expresa Ian MacPherson.

En cuanto a las toneladas de carga transferidas en el comercio exterior, el año 2016 un 39,8% se movilizó por puertos públicos mientras que el restante 60,2% fue por puertos privados, lo que grafica la importancia de que toda política nacional considere al sector en su globalidad e integre a todos los actores de la cadena logística.

Cadena logística



El movimiento de carga en el mundo va a aumentar, principalmente en el ámbito marítimo, “y Chile está llegando a niveles de eficiencia de países con muy buen desempeño. En esa línea, en la actualidad, “más que infraestructura, lo que se necesita es la integración de la cadena logística con los puertos, la ciudad, los centros de transferencia, con el transporte, con las aduanas, todo ello a través de un Plan Maestro de Desarrollo Logístico, bajo una mirada más integral”, relata el profesional de la CChC.

En el corto plazo y considerando las inversiones en curso, más que grandes inversiones en infraestructura portuaria, lo que los puertos chilenos necesitarán será un aumento en su eficiencia y, fundamentalmente, “en la eficiencia de la cadena logística que los alimenta. Para ello se requiere una coordinación de las múltiples agencias e instituciones que intervienen en la operación, de modo que sus inversiones sean consistentes con las mejoras que los puertos demandan, para disminuir los costos de los servicios”, detalla Gonzalo Pérez del CPI.

La integración modal es la base de la eficiencia en las cadenas logísticas. “Contar con grandes puertos no tiene sentido si no se cuenta con las vías para acceder a estos. Aspiramos a tener grandes puertos. No obstante, nos enfrentamos a un escenario donde las carreteras que alimentan los principales puertos del país están cada vez más congestionadas y al año 2025 la situación será extrema”, comenta el ejecutivo de la CPI.

El crecimiento del parque seguirá siendo alto y eso supone que habrá que considerar alternativas para poder movilizar la carga hacia y desde los puertos, si lo que se aspira es a minimizar la congestión. “Será necesario complementarla con una fuerte expansión de los servicios ferroviarios, hoy muy restringidos”, propone Carlos Piaggio de la CChC.

Infraestructura



A medida que aumente la demanda de los distintos puertos (tanto públicos como privados) éstos deberán invertir en infraestructura según el tipo de carga que movilizan. Así, los puertos del norte y sur deberán generar inversiones para movilizar graneles sólidos y los de la zona central para contenedores y graneles líquidos. Junto a ello, “es de suma importancia considerar los accesos a los puertos, las zonas de intercambio modal y de regulación portuaria, que permitan aumentar la eficiencia y disminuir el impacto en las ciudades”, señala el ejecutivo del CPI.
En el mediano y largo plazo, será necesario aumentar la capacidad de los puertos de modo que se pueda abordar “la creciente demanda que esperamos provenga de la expansión de nuestro comercio exterior, como consecuencia de la mayor actividad del país y de nuestra mayor influencia comercial en el cono sur de América Latina”, prosigue el experto de la Comisión.
Para Carlos Piaggio “hoy los buques de 10 mil, 12 mil y hasta 20 mil TEUs son una realidad. Nosotros quizás no vamos a recibir los más grandes, pero ya los de 8 mil y 10 mil son ya una realidad y eso requiere de infraestructura. Los países vecinos están avanzando y Chile no se puede quedar atrás si quiere seguir siendo un actor importante en materia de comercio exterior”.
En ese sentido el país deberá contar con frentes de atraque que tengan la capacidad de atender las últimas generaciones de naves . Desde la vereda de las empresas portuarias, “creemos que cada uno de los puertos ha realizado las inversiones y en su mayoría cuentan con infraestructura acorde a los desafíos de hoy. En conjunto con ello, ahora el foco está en invertir y diseñar sistemas de trabajo basados en las nuevas tecnologías. Junto con ello, el país debe hacer los esfuerzos para modernizar la infraestructura vial de ingreso a los terminales, ya que, ¿de qué sirve modernizar puertos, si sus vías de conexión se mantienen en el pasado? Planificar e invertir en esto sería fundamental para las proyecciones futuras. Asimismo, es relevante potenciar la coordinación de toda la cadena logística, lo que sin duda aporta a generar una industria aún más segura, eficiente y competitiva”, indica Alfredo Leiton, gerente general de Empresa Portuaria Iquique (EPI).

Si se proyecta lo que será el transporte marítimo a futuro, “es claro que con la infraestructura disponible habrá problemas para poder recibir de buena manera y en forma oportuna las naves que esperamos recalen en nuestros puertos. Es por ello que hay que avanzar en las definiciones de al menos un PGE (Puerto de Gran Escala) para poder operar grandes naves en forma simultánea, minimizando los tiempos de espera y permanencia”, ilustra Gonzalo Pérez.

Casos de éxito



Tanto los terminales privados como los estatales ya han comenzado a introducir los nuevos criterios que se requerirán para hacer más competitivo el desarrollo portuario en Chile. Un caso de éxito lo lleva adelante el Terminal Pacífico Sur (TPS), en Valparaíso. “Nuestro Terminal culminó a fines de 2016 el proyecto de ampliación más importante del puerto de Valparaíso en casi un siglo, con la extensión del Frente de Atraque principal en 120 metros, lo que en la actualidad nos permite contar con un Frente de Atraque 1, de 740 metros, apto para recibir dos naves Post-Panamax en forma simultánea; además del Frente de Atraque 2, que cuenta con 268 metros. Con este proyecto, además de sus obras complementarias, como la pavimentación antisísmica de los Sitios 4 y 5; y la compra de 3 nuevas grúas pórtico Súper Post-Panamax, aumentamos la capacidad operativa de nuestro Terminal en un 18%, anual, lo que consideramos tremendamente positivo tanto para nuestra empresa como para Valparaíso”, indica Javier Valderrama, gerente comercial de TPS.

Junto con esas obras, recientemente la empresa sumó una nueva grúa móvil Liebherr con capacidad similar a la de las grúas pórtico, y para el próximo año se espera la llegada de 2 grúas pórtico Súper Post-Panamax adicionales.

Desde abril de 2012 la operación del Puerto de Coquimbo pasó a manos de la empresa TPC, que ha ejecutado importantes inversiones de mejoramiento de la infraestructura, la que tuvo su peak en la etapa de reconstrucción del puerto tras el terremoto de septiembre de 2015, con una inversión cercana a los US$4,5 millones, reparando el sitio 2, el Terminal de Pasajeros, oficinas, entre otras dependencias.

Hoy trabajan en el proyecto de modernización del Puerto de Coquimbo que busca repotenciar y ampliar el terminal portuario a través de la construcción y operación de un nuevo Muelle Multipropósito, que impulsará la economía regional. “Esta obra permitirá que el Puerto pueda atender naves de 300 y hasta 366 metros de eslora, respectivamente, aumentando el calado para buques conteineros y mejorando la capacidad operativa. El Muelle Multipropósito contará con un puente de acceso de 308 metros y el Sitio 3 con un frente de atraque de 240 metros que comprende una superficie aproximada de 1,7 hectáreas; además, las obras contemplan la habilitación de un área de tránsito de 1,4 hectáreas para la circulación de equipos portuarios y la reparación estructural de los Sitios de Atraque N° 1 y N° 2 ya existentes. Esta nueva infraestructura tendrá una vida útil aproximada de 50 años”, detalla Gonzalo Fuentes, gerente general de TPC.
Más al norte, Empresa Portuaria Iquique, también en el año 2016, completó la primera etapa de la reconstrucción del puerto, “recuperando la operatividad del frente de atraque del Terminal Molo Nº1. El método constructivo utilizado consideró la incorporación de 1.284 micropilotes de acero, contando con un terminal con tecnología antisísmica”, adelanta Alfredo Leiton.
Con la segunda etapa de reconstrucción, que se iniciará el próximo año, se concluirá la alineación del frente de atraque multioperado mediante la instalación de una losa montada sobre pilotes preexcavados de hormigón, lo que permitirá aprovechar la profundidad existente , de forma natural, alcanzando los 15 metros. De manera complementaria se continuará con la ampliación de las áreas de respaldo por la vía de rellenos en el borde costero de Isla Serrano.

En vista de las tendencias que se proyectan por parte de los distintos actores del rubro portuario, los puertos chilenos deberán estar preparados en cuanto a dimensiones, eficiencia, continuidad de servicio e integración con los otros métodos de transporte de carga, para enfrentar los desafíos en un horizonte de 10 a 15 años. Entre estos, los más relevantes son: desarrollar una visión estratégica; disponer de mejor información para sustentar una estrategia; mejorar la coordinación dentro del sector público, hay más de 30 instituciones que intervienen en las operaciones de los puertos, y de este con los agentes privados; mejorar las relaciones puerto-ciudad; y diseñar una institucionalidad que permita enfrentar estas tareas.